
International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 1
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

EFFICIENT SPATIAL DATA HEURISTIC PARTITION USING
VORONOI DIAGRAM OVER DYNAMIC LOCATION DATA

THROUGH DECENTRALIZED SERVER

Mr.P.Kumar,P.Dhivya,S.Aslam Gowthar
Assistant Professor, PG Scholar

Department of Computer Science and Engineering
Nandha College of Technology

csekumar@gmail.com, dhivyapalanisamy1993@gmail.com, aslamgowthar786@gmail.com

Abstract

A static index is remodeled
sporadically from scratch instead of
updated incrementally. It’s been shown
that throwaway indices be at specialized
moving object indices that maintain
location updates incrementally. However,
throwaway indices suffer from
measurability thanks to their single-server
style and therefore the solely distributed
throwaway index (D-MOVIES), extension
of a centralized approach, doesn’t scale out
because the variety of servers will increase,
particularly throughout question process
section. we have a tendency to propose a
distributed throwaway spatial index
structure (D-Toss) that not solely scales
bent on multiple servers by victimization
Associate in Nursing intelligent
partitioning technique however
additionally scales up since it totally
exploits the multi-core CPUs accessible on
every server. D-ToSS apace constructs a
Voronoi Diagram that incorporates a flat
structure creating it an ideal acceptable
data processing. for instance, we have a
tendency to through an experiment show a
twenty five speed in question process
compared to D-MOVIES and this gap gets
larger because the variety of servers will
increase.

I INTRODUCTION

Large-scale information technology

has been evolving separate transaction and
analytical systems; data mining provides the
link between the two. Data mining software
analyzes relationships and patterns in stored

transaction data based on open-ended user
queries. Several types of analytical software
are available: statistical, machine learning,
and neural networks. Generally, any of four
types of relationships are sought.

Classes and Clusters: Stored data is used
to locate data in predetermined groups. For
example, a restaurant chain could mine
customer purchase data to determine when
customers visit and what they typically
order. This information could be used to
increase traffic by having daily specials.
Data items are grouped according to logical
relationships or consumer preferences.
For example, data can be mined to identify
market segments or consumer affinities.

Associations and Sequential patterns:
Data can be mined to identify associations.
The beer-diaper example is an example of
associative mining. Data is mined to
anticipate behavior patterns and trends. For
example, an outdoor equipment retailer
could predict the likelihood of a backpack
being purchased based on a consumer's
purchase of sleeping bags and hiking shoes.
A spatial database is a database that is
optimized to store and query data that
represents objects defined in a geometric
space. Most spatial databases allow
representing simple geometric objects such as
points, lines and polygons. Some spatial
databases handle more complex structures
such as 3D objects, topological cover ages,
linear networks, and TINs. While typical
databases have developed to manage
various numeric and character types of data,
such databases require additional

IJSER

http://www.ijser.org/
mailto:csekumar@gmail.com
mailto:dhivyapalanisamy1993@gmail.com
mailto:aslamgowthar786@gmail.com

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 2
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

functionality to process spatial data types
efficiently, and developers have often added
geometry or feature data types. A parallel
database system seeks to improve
performance through parallelization of
various operations, such as loading data,
building indexes and evaluating queries.
Although data may be stored in a distributed
fashion, the distribution is governed solely
by performance considerations. Parallel
databases improve processing and
input/output speeds by using multiple CPUs
and disks in parallel. Centralized and
client– server database systems are not
powerful enough to handle such
applications. In parallel processing, many
operations are performed simultaneously, as
opposed to serial processing, in which the
computational steps are performed
sequentially.

II EXISTING SYSTEM
Moving-object index structures

maintain location updates incrementally and
process only a fraction of the updates using
position approximation techniques.
However, all of these approaches suffer
from limited scalability due to their single-
server design. The Static indexes problem is
that most of the throwaway indices are
designed for the centralized paradigm that is
limited to the capabilities of a single server.
On the other hand, devising a distributed
throwaway index that scales out to multiple
servers is not straightforward due to the
following reasons. First, tree based indices
cannot directly be implemented in a
distributed setting by simply assigning an
index node to a server, because traditional
top-down search unnecessarily overloads the
servers near the tree root. Second, it is
essential to create equi-sized partitions;
otherwise, the server storing the largest
partition will become the bottleneck and
slow down the index construction. Third, if
the partitioning method does not preserve
spatial proximity of the objects, the queries
need to be forwarded to all servers to ensure
accuracy, which reduces query throughput.
Finally, since data objects continuously

move, static spatial partitioning methods,
where each server is assigned to a zip-
code, city or grid cell, will create
imbalance across the servers over time.
• High Update workload and

major scalability problem.
• Throwaway Indices- Suffer from

limited scalability due to single server
design.

• R-Tree/ Linearized kd-Tree – Top
Down search unnecessarily overloads,
reduce query throughput and server
access for imbalance.

• D-MOVIES - Query throughput
degrades as the number of servers
(nodes) increases due to the high query
coordination cost.

• RT-CAN is not designed to
handle dynamic datasets.

• Spatial Data only used for
moving objects.

2.1 Drawbacks

• A distributed throwaway index that
scales out to multiple servers is not
straightforward

• The objects are broken with hashing.
• Requires a large number of message-

passing across the nodes to process
updates, Imbalanced grid partition.

III PROPOSED STSTEM

Propose a distributed throwaway
temporal spatial index that scales near-
linearly both in index construction and Slide
Window query processing. The
fundamental construct of our index, dubbed
(for Distributed Throwaway Spatial Index
Structure),is a Voronoi diagram (VD)
where we adapt a Voronoi based
partitioning method also used Heuristic
Partition Algorithm and build a Voronoi
cell (VC) for each data object in a
distributed fashion. Selected VD a sour
partitioning technique and underlying index
structure because 1) it has a flat structure
that lends itself nicely to parallel processing
since each Voronoi cell can be built

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 3
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

autonomously in parallel and 2) it is
an extremely efficient data structure to
answer a wide range of spatial queries. The
main challenge in distributed Voronoi
Diagram generation is that, due to
partitioning, Voronoi cells might be
inaccurate because some of their
neighboring data objects may reside in a
different server so salve this problem to use
Heuristic Partition Algorithm. The intuitive
approach to overcome this issue is to first
build the global Voronoi over all the data
objects on a single server and then partition
it across the servers for query processing.
However, this build- first-distribute-later
approach suffers from limited scalability.
To overcome this challenge, we propose a
novel three- step distribute first-build-later
scalable framework. The sliding-window
queries that define the authorized view of
the data stream for each role.
3.1 Advantages

• The multi-core architecture of each

server node.
• All servers communicate with each

other in parallel.
• Multi-core parallelization during the

local index (local VD) construction.
Efficient partition creation in Hueristic
Partition.

IV ALGORITHM DESCRIPTION
4.1 Voronoi Diagram Algorithms

A Voronoi diagram decomposes a space

into disjoint polygons (cells) based on the
set of generators (i.e., data points). Given a
set of generators S in the Euclidean space,
Voronoi diagram associates all locations in
the plane to their closest generator. Each
generator s has a Voronoi cell consisting of
all points closer to s than other generators.

4.2 DKNN - Distributed K-Nearest

Niebuhr Search Algorithm.

A given query q, DKNN can directly
identify the set of strips that are
guaranteed to contain k neighbors of q,

which call the candidate strips.
Step1: Calculating the number of
candidate strips.
Step2: Identifying the set of candidate
strips.

Finding Three NN using D-KNN

FIG:DKNN Algorithm

4.3 Slide-Window Query

• Query imprecision is defined as the

total sum of false-positives and false-
negatives for a predicate sliding-
window query evaluated on an
anonymized Data Stream.

• Slide query is evaluated for all the
tuples in equivalence classes that
overlap the query region. A utility
measure that for a given sliding-
window query captures two types of
information loss; loss due to
generalization (in terms of false
positives) and loss due to publishing
delay (in terms of false negatives)

FIG:Slide Window Query
Algorithm

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 4
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

4.4 Heuristic Partition Algorithm

V. SYSTEM ARCHITECTURE

Flow of D-ToSS where each
server stores a subset of the data objects
and corresponding local index. As
shown, while the current locations are
collected from the data objects, the
queries are processed through the current
indices. This separation allows us to run
data partitioning phase the background
without affecting the performance.
Obviously, data partitioning phase does
not need to be executed at every index
construction cycle since the data
distribution does not change significantly
within several seconds.

5.1 Voronoi Diagram Construction
Module

Generate partial Voronoi diagrams (PVD)
in each node in parallel and merge the
(partial) results in a single node to build
one global Voronoi Diagram. Every Node
has a Local Voronoi Diagram for easily
lookup the data object in query time

5.2 Pivot Selection and Partition Module

Compute the total sum of the

distances between every two objects and
choose the set with the maximum total
sum as pivots. A partition can add a false-
positive tuple to a predicate sliding-
window query due to a spatial overlap (QI
attributes), temporal (time-stamp attribute)
overlap, or both temporal and spatial
overlaps.
Voronoi-based adaptive partitioning
technique that quickly learns from the
dataset and distributes the objects across
the servers while preserving the spatial
proximity among the objects and balancing
load among the servers globally. Second,
to take advantage of the multi-core
architecture of each server node, generate
local Voronoi diagrams (local VDs) using
multiple threads where every Voronoi cell
is generated by a thread autonomously.

5.3 Data Object Distribution Module
 The data object divided into
equally sized partition using voronoi
cell diagram or Heuristic Partition
algorithm. Finally all data sent to all
other node in which local voronoi
diagram are created
independently. All partition data will
store local storage and also maintain
local index overall index maintain for
global node name global index.

5.4 Query Module

D-ToSS to evaluate two major
types of spatial queries: range and
Distributed k nearest neighbor (Dk-NN).

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 5
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

With D-ToSS, the queries can be
submitted to any node in the system. The
Dk-NN algorithm works on distributed
manner to match nearest data for global
partition and find the result forward to
user.

VI CONCLUSION

D-ToSS, to index highly dynamic
moving object data. The main idea behind D-
ToSS is to build short-lived Voronoi based
index structures with combination of Slide
Window Query instead of updating indexes
with each location update from the moving
objects. D-ToSS creates the throwaway
indexes in a very short time by employing a
fully decentralized parallel and distributed
architecture that uses multiple server nodes in
a cluster. An efficient parallel search
algorithm (DKNN) with which queries can
be submitted to any node in the cluster
without looking for the relevant node that
may include the result-sets which provides
decentralization unlike tree based
approaches. This project successfully
Developed for C#.net with SQL server
efficiently.

VII REFERENCES

[1]Akdogan, U. Demiryurek, F. Banaei-
Kashani, and C. Shahabi. “Voronoi-based
geospatial query processing with
MapReduce,” in Proc. Cloud Comput.
Technol. Sci., Dec. 2010, pp. 9–16.

[2]S. Barahmand and S. Ghandeharizadeh,

“BG: A benchmark to evaluate interactive
social networking actions,” in Proc. Conf.
Innovative Data Syst. Res., Feb. 2013.

[3]Cary, Z. Sun, V. Hristidis, and N.
Rishe, “Experiences on processing spatial
data with mapreduce,” in Proc. Sci. Stat.
Database Manage., 2009, pp. 302–319.

[4]S. Chen, B. C. Ooi, K. L. Tan, and M.
A. Nascimento, “A self-tunable spatio-
temporal Bþ-tree index for moving
objects,” in Proc. Spec. Int. Group
Manage. Data, 2008, pp. 29–42.

[5]Y. Tao, D. Papadias, and J. Sun,
“The TPR_-tree: An optimizedspatio-
temporal access method for predictive
queries,” in Proc. Very Large Data
Bases, 2003, pp. 790–801.

[6]U. Demiryurek and C. Shahabi,
“Indexing network voronoi diagrams,” in
Proc. Database Syst. Adv. Appl., 2012,
pp. 526–543.

[7]L. Ding, B. Qiao, G. Wang, and
Chen Chen, “An efficient quadtree
based index structure for cloud data
management,” in Proc. Int. Conf. Web-
Age Inf. Manage., 2011, pp. 238–250.

[8]J. Dittrich, L. Blunschi, and M. A. Vaz
Salles, “MOVIES: Indexing moving
objects by shooting index images,”
Geoinformatica, vol. 15, no. 4, pp. 727–
767, 2011.

[9]R. A. Finkel and J. L. Bentley, “Quad
Trees a Data Structure for Retrieval on
Composite Keys,” Acta Informatica vol.
4, Mar. 1974, pp. 1–9.

[10]Gold and P. Angel, “Voronoi
Hierarchies,” in Geographic Information
Science, 2006, pp. 99–111.

IJSER

http://www.ijser.org/

	EXISTING SYSTEM
	2.1 Drawbacks
	PROPOSED STSTEM
	/Advantages
	IV ALGORITHM DESCRIPTION
	DKNN - Distributed K-Nearest Niebuhr Search Algorithm.
	Slide-Window Query
	Heuristic Partition Algorithm
	Module
	Pivot Selection and Partition Module
	Data Object Distribution Module
	Query Module
	CONCLUSION
	REFERENCES

